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We discuss an application of extended hydrodynamics to a model of water, in a range of wave num-
bers k, where the effect of single-molecule modes must be taken into account together with the collective
phenomena underlying sound propagation and dispersion. The calculation of the density-density,
energy-density, energy-energy, and longitudinal and transverse current correlation functions from a
molecular dynamics simulation of the transferable intermolecular potential with four points (TIP4P)
model of water, allows us to obtain the k dependence of the generalized hydrodynamic coefficients. In
Earticular, we have found that the ratio of generalized heat capacities y(k)=c,(k)/c,(k)=1 up to k=1
A 7! and that the correlation between temperature and density fluctuations is negligible at all times,
while there is an important frequency dependence of the transport coefficients. This leads to a remark-
able simplification of the expression of the Laplace transform of the correlation functions, although
models for the transport coefficients are still necessary at the present state of the theory. The frequency
dependence of the transport coefficients is necessary to describe correctly the behavior of the density-
density and temperature-temperature autocorrelation functions (ACF’s). A model for the frequency
dependence of the generalized viscosity @(k,z) and thermal diffusivity Dy (k,z) is proposed here. In addi-
tion to the correct short-time behavior of the correlation functions of the memory kernel, this model is
able to account satisfactorily for the effects of the acoustic mode and the single-molecule modes, in par-
ticular, that related to the oscillation in the nearest neighbor cage (45 THz). A simple polynomial extra-
polation to k=0 of the parameters of the model gives values consistent with the large sound dispersion
observed in water. In the supercooled region, the shape of the predicted dispersion curve shows that
there are two k ranges, 0.01-0.03 and 0.2-0.5 A ~!, which account for most of the dispersion. When the
temperature increases the contribution to the lower k range is less apparent and shifted to higher k, but
the behavior of the 0.2-0.5 A ~! range does not change. The model also predicts an acoustic mode fre-
quency wm,(k)/k, 2-3 times larger, and a bandwidth Aw, ,(k)/k?, almost an order of magnitude small-
er than those in the hydrodynamic regime. Moreover, w,(k) and Aw, ,(k) are in quantitative agree-
ment with the neutron scattering data at 7=298 K. The location and height of the first step of the
dispersion curve are related to the long-time tail of generalized viscosity, while its size is determined by
the anomalous value of the second moment of the longitudinal current o, (k) as compared to that of the
density-density ACF wo(k). The analysis of the transverse current ACF with the same model and the
value of the transport coefficients obtained confirm that the TIP4P model potential leads to a shear and
bulk viscosity in satisfactory agreement with the experimental data at 298 K. In the supercooled region,
conversely, the dynamics obtained with the TIP4P potential is 2-3 times faster than that of real water at
the same temperature, as already noted for the self-diffusion coefficient and dielectric relaxation times.

PACS number(s): 61.20.Gy, 61.25.—f, 62.60.+v

I. INTRODUCTION

Over the past decade there has been a debate in the
literature on the physical mechanism underlying a veloci-
ty of sound in water roughly twice as large, in the range
0.25<k <1 A7l as that in the hydrodynamic, k —0, re-
gime. This was observed both by molecular dynamics
(MD) computer simulation [1,2] and by inelastic neutron
scattering experiments [3]. These data have been ex-
plained either as evidence of a second acoustic mode that
propagates through the hydrogen bond network with a
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speed close to that in ordinary ice [4,5] or as a conse-
quence of anomalous positive dispersion of the normal
acoustic mode [6,7].

Recent simulation results [8—10] support the latter hy-
pothesis. Actually, it has been shown in [8] that one of
the two peaks in the spectrum of the density-density au-
tocorrelation function (ACF), for water modeled by the
Stillinger and Rahman ST2 potential [1,5], is due to a
single-molecule mode rather than to a second high-
frequency sound mode. On the other hand, Balucani
et al. [9,10] have proven that the large sound dispersion
is to be traced to the anomalous, very large value of the
second moment of the longitudinal current compared to
that of density-density ACF. This has been related to the
structure of water and in particular to the distance of the
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main peak of the oxygen-oxygen radial distribution func-
tion gy, (7), determined by the directionality of the hydro-
gen bond and the tetrahedral arrangement of molecules
in the network.

In order to interpret their simulation results obtained
with the Matsuoka-Clementi-Yoshimine model inter-
molecular potential, Wojcik and Clementi [6] fitted the
spectrum of density-density ACF with a model proposed
by Levesque et al. [11,12] to analyze their simulation
data of liquid argon. This attempt has shown that the ob-
served behavior is consistent with a large sound disper-
sion. However, as the dependence on k of some hydro-
dynamic coefficients was unknown, Wojcik and Clementi
were forced to some assumptions and concluded that this
model reproduces fairly well the central peak of the dy-
namic structure factor, but shows some drawbacks con-
cerning the side peaks, i.e., those relevant to sound prop-
agation.

If the hypothesis of a large dispersion of ordinary
sound is correct, generalized hydrodynamics [13-15]
should provide useful insight and this is why we attempt
to apply this approach to the overall dynamic behavior of
water, in the spirit of two fairly recent works [16,17].

Then, in our analysis we not only calculate the
density-density correlation functions (CF’s) but also the
energy-density and energy-energy CF’s in addition to lon-
gitudinal and transverse current CF’s at 245 K, for
several values of k. To investigate the temperature effect,
the density-density, longitudinal, and transverse current
CF’s have been calculated at 298 K.

The equal time values of this set of correlation func-
tions allow us to obtain the generalized enthalpy A (k),
constant volume and pressure heat capacity c¢,(k) and
¢,(k), their ratio y(k), and the thermal expansivity a(k).
We emphasize that the calculation of energy-energy and
energy-density CF’s, in addition to the density-density
CF, and the knowledge of the k dependence of the ther-
modynamic functions, in particular, y(k), besides their
interest per se, also eliminates the risk of an incorrect in-
terpretation of the physical meaning of the parameters
that enter a fitting function for the time dependence of
the density-density CF (see Sec. IV B).

de Schepper et al. [17] have shown that, for the
Lennard-Jones (LJ) liquid, the evaluation of the three in-
dependent correlation functions (density-density, energy-
density, and energy-energy) allows a complete description
of the longitudinal dynamics. In other words, the time
dependence of all 25 CF’s based on the five fundamental
quantities, i.e., the longitudinal velocity u, the longitudi-
nal stress tensor o, and the longitudinal heat flux g, in ad-
dition to the density n and energy e, can be described as a
linear combination of five exponentials. The time domain
approach coincides with the more general, formally ex-
act, frequency domain approach when the coefficients of
the linear combination do not depend on time [17]. This
cannot be assumed to hold in the case of water and even
for simple LJ liquids and liquid metals, at least in some
thermodynamic states, whenever the time dependence of
the generalized viscosity ¢(k,t) requires two separated
time scales to be correctly described [11,12,18]. There-
fore, we work in the frequency domain to obtain the gen-
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eralized thermodynamic properties and transport param-
eters necessary to describe the dynamics of the system,
using Laplace transforms of correlation functions of
orthonormal combination of the five fundamental vari-
ables relevant to the longitudinal dynamics [17].

In order to reach a correct description of the normal-
ized density-density and temperature-temperature ACF’s,
it is necessary to take into account the frequency depen-
dence of the transport coefficients. Many papers, mainly
concerning the viscoelastic theory [19-22], have stressed
the importance of this approach to generalize linear hy-
drodynamics. Moreover, the spectrum of the velocity
ACF has been related [23] to the frequency-dependent
friction coefficient, which is proportional to the viscosity
in the Stokes-Einstein formula. This relation is particu-
larly important when the velocity ACF has a long-time
tail, e.g., in argon close to the triple point or in water
below room temperature. In these thermodynamic states,
it is apparent that, in argon [12], rubidium [21], and wa-
ter [10], the time dependence of the generalized viscosity
shows two well separated time scales. As a consequence,
the simulation results cannot be described correctly by
a simple exponential dependence of the generalized
viscosity.

In the case of water, the spectrum of the velocity ACF
displays two main peaks, one (45 THz) relevant to the os-
cillation in the cage of the nearest neighbors, whose am-
plitude increases when temperature is lowered, and a
lower frequency band (910 THz) generally considered a
O—O0—O0 bending mode [2,5,8,24].

Any model to be used in the description of the general-
ized transport parameters of water should take these
self-modes into account, especially at those k values
where the acoustic mode frequencies become of the same
order of magnitude as the self-modes, which depend
weakly on k. Hence the theoretical approach introduced,
which supplements traditional hydrodynamics with infor-
mation on generalized viscosity, from the longitudinal
stress tensor fluctuations, and thermal diffusivity, from
longitudinal heat flux fluctuations, should provide useful
insight both on single-molecule dynamics and on the
influence of long-time tails on the collective dynamics.

This paper is organized as follows. Computational de-
tails on the simulations we carried out are collected in
Sec. II. Section III is devoted to a brief outline of the
theory. Section IIT A contains a discussion of the prob-
lems inherent to the extension of generalized hydro-
dynamics to molecular liquids and of the approximations
we adopted, while Sec. III B recalls the main results re-
quired to analyze the simulation results. The latter are
presented in Sec. IV, where the behavior of the general-
ized thermodynamic quantities is discussed and the im-
portance of the frequency dependence of the transport
parameters is stressed. In Sec. V we present a model for
the transport parameters that is applied first to longitudi-
nal dynamics, analyzing the anomalous sound dispersion
(Sec. VI), the longitudinal stress tensor, heat flux fluctua-
tions (Sec. VII), and the relation between collective and
individual dynamics and the long-time tails behavior
(Sec. VIII). In Sec. IX the model is also applied to trans-
verse currents. Finally, the various transport coefficients
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(viscosity, shear modulus, and thermal conductivity) are
extrapolated to k =0, to compare the calculated values to
the experimental data (Sec. X). Section XI summarizes
our results.

II. COMPUTATIONAL DETAILS
AND OBSERVED DYNAMIC VARIABLES

The results we present in this paper have been obtained
from an analysis of the trajectories produced by a molec-
ular dynamics simulation, in the microcanonical ensem-
ble, of the transferable intermolecular potential with four
points (TIP4P) model of water [25] on a sample of 343
molecules in a cubic box with periodic boundary condi-
tions in the usual minimum image convention. The
short-range Lennard-Jones part of the TIP4P potential
has been spherlcally truncated at half the box side, i.e.,
r.=10.9 A. Long-range corrections have been applied to
both the internal energy and the virial sum, replacing the
radial distribution function with 1 beyond the cutoff dis-
tance r,.

The equations of motion have been integrated with the
generalized method of constraints [26], with time steps of
2.0 and 2.5 fs at 298 and 245 K, respectively, fairly usual
values for rigid models of small molecules. The use of the
method of constraints and of Ewald sums allowed very
good energy conservation, with no upward or downward
drift and fluctuations no larger than 1072%. Also, no ve-
locity rescaling was required to maintain average temper-
ature at the desired value.

The length of the runs reported in Table I relates to the
number of steps performed starting from very well equili-
brated configurations from previous work [24,27]. The
thermodynamic data obtained in the present work repro-
duce quantitatively those computed in [24]. All k-
dependent time correlation functions have been averaged
over all k vectors of the same magnitude. Other details
on the runs and the computed CF’s are given in Table I.

To reduce truncation effects in the Laplace transforms,
we have fitted the time correlation functions with a linear
combination of exponentials with complex coefficients, in
the spirit of what done for argon [17]. These functions
allow us to obtain very accurate fits, although the physi-
cal meaning of the optimized parameters is difficult to ex-
tract because the frequency dependence of the transport
parameters is important. The difference between the time
correlation function and the fitting function is then nu-
merically transformed and the result added to the analyt-
ical transform of the fitting function.

TABLE I. Details of the simulation runs. The subscripts of
the correlation functions relate to density (1), longitudinal ve-
locity (2), and energy (3) (see text). C, is the transverse current

ACF.

Run T (K) N/10° At (ps) Correlation functions
1 245 52 0.0025  F,,F5,,C,
2 245 66.5 0.0025  F,,,Fy,Fy3,Fs
3 298 40 0.002 F\\,Fy,C,

1093

The Laplace transform of the normalized longitudinal
current ACF’s, G,,(k,t), which have been computed in-
dependently and suffer smaller truncation effects, have
been used as a check of the numerical procedure. The
comparison with the transform of the normalized
density-density ACF’s, G, (k,1), is done through the well
known relation

0’G,(k,0)

Gylk,0)=
22( @) fun(k)z

> (2.1)

where

Gj,(k,a))ERe{Gﬂ(k,z)}

fowdt e "G (k,t) ] .

The relation (2.1) is very well satisfied at all frequencies
and for the k range explored. G,,(k,w) is more accurate
at the highest frequencies (v > 30 THz) and can be used
to correct w’G,,(k,w). In the low-frequency region, on
the other hand, G,,(k,®) is more accurate, so the most
effective fitting procedure relies on a linear combination
of the two functions, namely, (1+8w2)G”(k,co) with
0=<8=1 ps®. It should be noted that when §=1/f,, (k)%
this linear combination becomes G,(k,0)+G,,(k,0)
[Eq. (2.1)].

=Re (2.2)

III. GENERALIZED HYDRODYNAMICS
EQUATIONS AND TRANSPORT COEFFICIENTS

A. Theory and approximations adopted

We give here just a brief outline of the theory, which is
described in detail in [17], keeping the same notation for
the sake of convenience. As already mentioned, the 25
time derivative of CF’s, F j,(k,t), can be obtained from
the five fundamental quantities density, longitudinal ve-
locity, energy, longitudinal stress tensor, and longitudinal
heat flux. We number the above quantities from 1 (densi-
ty) to 5 and define the time CF’s as

(K, t)= (a (k)*a,(k,t)) . (3.1)
The five microscopic quantities a;(k) are defined as

(1)

N
a;(k)= 2 AP(k)e ~ikr (3.2)

7\?

where the index (/) relates to the molecules and

AP (k)=1 (3.3)
for density (j =1),
AP (k)=vPk/k (3.4)
for longitudinal velocity (j =2),
AP (k)= 1)2+1 2 Sy (3.5)
n=1+#1

for energy density (j =3),



1094

AP (k)=(v'P-k/k)?
. N
i d¢ (e_ik'r“"]—l)

. (3.6)
Imk? e ar(In)
for longitudinal momentum flux (j =4), and
Oy |1 a2 1 & n
AT (k)= {—mv"" +— ¥ ¢ (v k/k)
2 2 n=1#I]
;N
i 0,09, —ikerlim _
+2k > v ar”’”(e Her 1) (3.7)

n=1%#l

for longitudinal heat flux (j =5).

Equations (3.3)-(3.7) are written for an atomic fluid.
Hence an extension of these definitions to a molecular
liquid such as water would require replacing the center of
mass position and velocity with that of all three atoms, so
that for j =1 there should be three phase factors, for
Jj =2 three velocities, and for (j =3) additional summa-
tions extended to the three velocities and the four interac-
tion centers, as the TIP4P potential [25,28,29] depends
on the charges position for the Coulomb part and on the
oxygen position for the short-range Lennard-Jones part.
Relatively few attempts to extend generalized hydro-
dynamics to molecular liquids have been made [30-32].

Furthermore, the main interest of this work relates to
relatively slow modes ( <70 THz), due to the center of
mass dynamics, especially in the low-k region [33].
Hence we have chosen a mixed description, whereby all
phase factors and velocities correspond to the center of
mass, while the potential energy E,, contains all atom-
atom and charge-charge contributions required by the
TIP4P model.

For a molecular liquid such as water, described as a set
of rigid molecules, the total energy can be written as

AL =1mo P+ 1 3 10+ Epy (3.8)

where I” and ! are the moment of inertia and the an-

gular velocity relative to the ith principal axis of inertia.
As a consequence, the energy-energy correlation function
contains a number of terms of rather different weight.
We could check that the (EpotEpot(t)> contribution is,
by far, the largest at both temperatures. On the contrary,
rototranslational coupling has been shown [2,33,34] to be
negligible compared to translational-translational and
rotational-rotational terms. The latter can be further
decomposed into a very rapid librational motion plus a
much slower reorientational dipolar motion.

The librational motion can easily be eliminated from
Fi;(k,t) (see Sec. IV and Table III) without affecting this
CF in the part relevant to our analysis. As to the reorien-
tational terms, again the potential part, which is included
in E ., dominates the kinetic one. Hence it seems sensi-
ble to neglect the second contribution on the right-hand
side of Eq. (3.8) and maintain an atomiclike description of
the kinetic terms, at least as far as the first three variables
above are concerned [Egs. (3.3)-(3.5)].

To verify this hypothesis, generalized thermodynamic
variables such as A (k), c¢,(k), and a(k) have been com-
puted from CF’s which include or neglect the rotational
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kinetic term. The values we obtain in the k —O0 limit are
in a much better agreement with the corresponding ordi-
nary thermodynamic variable, i.e., A, c,, and a [24,28],
when they are obtained without rotational contributions
to kinetic energy (see, e.g., Fig. 8). These approximations
we adopted rely on the very different time scales [33,34]
of the acoustic modes (which we are mainly interested in
here) with respect to the other motions and on the much
larger size of the potential contribution to the energy
compared to the kinetic one.

Finally, work in progress [35] on F,,(k,t) shows that
the model for the transport coefficients, based on the re-
sults of our approximate description, leads to a prediction
of the CF for both diagonal and off-diagonal components
of the stress tensor in quite satisfactory agreement with
the results we obtain with the correct calculation in the
k —0 limit.

B. Initial values and calculation
of the generalized hydrodynamic coefficients

The initial values and the short-time behavior of the
CF’s F I (k,t) are the necessary information to calculate,
according to the theory of critical phenomena [36-38],
the generalized thermodynamic coefficients; see Egs.
(2.15)—(2.18) in Sec. II C in Ref. [17]. Defining the initial

value

Vy(k)=F;(k,0), (3.9)
these relations are
h(k)Vll(k)—V13(k)
alk)= 5 , (3.10)
vy Ftk?
33 Vll(k)
c, (k)= 5 R (3.11)
kgT
h(k)?*V 1 (k)—=2h (K)V 3(k)+ V33(k)
c, (k)= T2 , (3.12)
B
Vi(k)|V (k)—ik)2 , |
11 33 Vi (k)
where
*F 5 (k,t)
hk)=——"1y D (3.14)

im
kpTk*:i—0 3%
is the generalized enthalpy per molecule.
C. Orthonormal variables’ ACF’s and their properties

As shown in [17], it seems more convenient to intro-
duce a new set of orthonormal variables b ;(k) and linear
combination of a ;(k), whose time correlation functions
can be defined as in Eq. (3.1)

Gk, 1)=(b;(k)*b,(k,1)) (3.15)

and became linear combinations of the F;(k,t). We give
in the following the expression for G, (k,t), Gy, (k,t),
G13(k,t), and G33(k,t)2
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Gy, (k p=Fullt) (3.16)
’ Vilk) ’
Gk p=Tulkl (3.17)
’ Valk) ’
Fy (k1)
FB(k’t)—V”(k)_l_/:(_k)—
Gp(k,t)= _— (3.18)
vy (k) VMk)—M ]
Vi(k)
Vis(k) |* Vis (k)
vk F“(k,z)—2mF13(k,t)+F33(k,t)]
Gk, t)= T (3.19)
Vss(k)-————-‘Vl:l(k)

Defining the Laplace transform of Eq. (3.15) as in Eq. (2.2), the following set of formally exact equations can be ob-
tained [17]:

5
2Gy(k,2)=— 3 H,,(k2)Gy(k,2)+8; (,I=1,...,5). (3.20)

n=1

H(k,z) is a symmetric matrix which is a function of four independent combinations of the coefficients Vﬂ(k), the
FunK)s fuo(K), fur(k), and fr,(k) [see Eq. (2.28) of Ref. [17]], and of three generalized transport coefficients z, (k,z),
z,(k,z), and z,,(k,z), formally expressed in Appendix A of [17]:

0  ifgk) 0 0 0
ifun(k) 0 if,r(k) if,s(k) 0
Hkz)=| 0 ifk) 0 0 ifrg k) | (3.21)
0 if yolk) 0 z,(k,z)  izg,(k,z)
0 0 ifrg(k) iz, ,(k,z) z,(k,z)
[
It should be noted that no approximation is required to _ [zz+z¢(k,z)z + fun(k)?]
obtain Eq. (3.20), while to transform it back in time Gi(k,z)= D (k.z) ) (3.25)
3G (k,1) 5
= 3 Hup(kGu et (I=1,...,5) _ {[z tzr(k,2)][2°+ f 0 (k)] +2f 7 (K))
t fipns Gy lk,z)= 3 )
3.22) (2 42, ko) + —22 2y )
B g [z +2,(k,2)] ’
it is necessary that z, Zg, and Z40 do not depend on fre-
quency. (3.26)
From the relation £3.20), the 25 spectra of the time _ z[z2+z¢(k,z)z +fun(k)2+fuT(k)2]
correlation functions G;(k,z) can be computed as a func-  Gss(k,2)= 2 ,
tion of the elements of H(k,z). We report here the re- [z +z,(k,z)]+ Z40(k,2) D (k.z)
sults that relate G,;(k,z), G3(k,2), Gy3(k,z), Guy(k,z2), 7 [z +z,(k,z)] ’
and Gs5(k,z) to the elements of the matrix H(k,z): (3.27)
G, (k,2)= fl o ) where
z+ un > D (k,2)={[z +zr(k,2)][2*+2z4(k,2)z + [, (K)*]
[fur(k)+Alk,2)]
z+zy(k,z)+ +z[f,rk)+A(k,z)]%) (3.28)

z +zp(k,z)
and z¢(k,z), zp(k,z), and A(k,z) are defined in Sec. IVB
of Ref. [17]. We notice that they are proportional to
f,m(k)z,qu(k)2 and the product f,,(k)fr,(k)z,,(k,z),

(3.24) respectively.
: With the short-time values of the time correlation

(3.23)

_fun(k)[fuT(k)+A(k,Z)]
D (k,z) ’

613(k72)=
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functions Fy,(k,t), F,,(k,t), F5(k,t), and F3;(k,t) it is
possible to calculate every element of the hydrodynamic
matrix, except the three transport coefficients z,(k,z),
zq(k,z), and zqa(k,z). The latter, as shown in Appendix
A of [17], can be considered the Laplace transforms of a
set of time correlation functions J,(k,t), Jq(k,t), and
Jyoks ).

The z dependence of these generalized transport
coefficients must be taken into account unless the relaxa-
tion time of Jq(k,t), J,(k,t), and Jq(,(k,t) is much smaller
than that of Gj(k,z). Only when this condition is
satisfied can Eq. (3.20) be inverted to obtain Eq. (3.22).
Finally, we note that the CF’s G,,(k,?), G3(k,t), and
Gy;(k,t) can be derived from simulation data for
F,,(k,t), F5(k,t), and Fy;(k,t), using Egs. (3.16)-(3.19).

0.07}
0.05

0.03

0.06 p

0.04

0.02

1.0

0.5

0.25

3t [ps]

IV. SIMULATION RESULTS

The time correlation functions Fy;(k,t) and F,,(k,t),
computed at various values of k for T'=245 and 298 K,
are shown in Figs. 1 and 2. To give an idea of the statisti-
cal uncertainty of the calculation, the functions obtained
in the first and the second simulation of Table I are com-
pared in Fig. 3 at k =k _; .

F;(k,t) and F3;(k,t) at T =245 K are plotted in Fig.
4. An additional simulation run where the energy includ-
ed the rotational part was also carried out and the results
are displayed in Figs. 4(e) and 4(f). Figure 5 shows the re-
sults for the transverse current CF’s at both tempera-
tures.

As expected, the short-time oscillation, typical of libra-

Fu(k,t)

0.06

0.04

0.02

0.05

0.03

0.08 i

0.02

0.08

0.02

FIG. 1. (a) Density-density ACF at the first seven k values of Table II (run 1, 7=245 K). (b) Density-density ACF at the first six
k values of Table III (run 2, T =245 K). (c) Density-density ACF at the other k values of Tables II and III (runs 1 and 2, T'=245 K).
(d) Density-density ACF at the k values of Table IV (run 3, T=298 K).
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0 0.25

FIG. 2. (a) and (b) Longitudinal current CF’s (run 2, T =245
K). (c) Longitudinal current CF’s (run 3, T'=298 K).

0.5

0.75

t [ps]

1.0

0.50

1.5 t [ps]

FIG. 3. I:I(gmalized longitudinal current ACF at k =0.288
and 0.705 A . The inset shows the corresponding density-
density ACF. The bold curves are values averaged over runs 1
and 2, while the thin curves relate to run 2.

tional motions, can be seen only in F3;(k,¢). To make the
behavior of this function more consistent with that of all
other correlation functions we calculate, the short-time
oscillation has been eliminated by extrapolating to t =0 a
polynomial fit of F;;(k,t) vs t? (see Fig. 6) in the range
0.06-0.3 ps. The spectrum of the difference between the
fitted and the computed function is significantly different
from zero only in a frequency range typical of librational
motions, with no intensity in the range 0—50 THz. The
initial values V;;(k) of the computed time correlation
functions are collected in Tables II-IV.

A. Generalized hydrodynamic variables

The generalized thermodynamic variables 4 (k), ¢,(k),
v(k), and a(k) calculated according to Egs. (3.10)-(3.14)
and the generalized frequencies f,,(k), f,,(k), f.r(k),
and fp,(k) of matrix (3.21) are collected in Table V. The
k dependence of V;(k)=S (k) is shown in Fig. 7 at 245

TABLE II. Equal time values of the CF’s of run 1 (7"=245
K).

&, Vi, Y C,(k,0)
No. (A ) (A/ps)? (A/ps)?
1 0.2877 0.0621 11.44 11.42
2 0.4068 0.0656 11.41 11.32
3 0.4982 0.0594 11.36 11.29
4 0.5753 0.0655 11.15 11.44
5 0.6432 0.0720 11.40 11.27
6 0.7046 0.0808 11.34 11.40
7 0.8631 0.0863
9 1.4668 0.3675
10 2.0341 0.9785




1098 DAVIDE BERTOLINI AND ALESSANDRO TANI 51

TABLE III. Equal time values of the CF’s of run 2 (T'=245 K). In the second part of this table, the
energy values used in the CF include a rotational term. VJ is the initial value obtained when the libra-
tional contribution in F;;(k,?) has been removed (see text).

K Vi Ja Vis V3 Ve
No. (A7) (A/ps)? (kJ/mol) (kJ/mol)? (kJ/mol)?
1 0.2877 0.0550 11.06 —2.365 145.53 140.17
2 0.4068 0.0618 11.11 —2.660 152.43 145.82
3 0.4982 0.0562 11.29 —2.484 152.69 146.04
4 0.5753 0.0553 11.04 —2.557 143.48 137.99
5 0.6432 0.0658 11.30 —2.890 164.3 157.49
6 0.7046 0.0710 11.36 —3.140 177.59 170.48
8 1.2865 0.209 11.18 —8.848 411.67 403.93
11 2.0744 1.016 11.22 —41.231 1704.3 1693.9
12 2.8766 1.439 11.10 —59.681 2508.7 2494.0
1 0.2877 —2.1311 135.76 134.13
2 0.4068 —2.391 139.12 136.21
3 0.4982 —2.2382 141.64 137.56
4 0.5753 —2.2863 131.79 126.83
5 0.6432 —2.6011 149.31 144.13
6 0.7046 —2.8412 161.10 155.23

F (kv
150 [(KJ/mol)?) (c)

100

150

100

F33(k,t) F33(k,t)
[(ki/moD)? (d) 120 [(kJ/mol)*
2000
1000
400 160}
A (f)
200 1
SOL 3
0 0.5 1 1.5 [ps] 0 0.5 1 1.5 ¢ [ps] 0 0.5 1 1.5 ¢ [ps]

FIG. 4. (a) and (b) Density-energy CF’s (run 2, T'=245 K). (c) and (d) Energy-energy CF’s (run 2, T'=245 K). (e) Density-energy
CF’s and (f) energy-energy CF’s at the k values given in the second part of Table III. The energy values include a rotational kinetic
term (see text).
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C(k,t)
[AZ/pSZ] (a)

0 1 2 3

t [ps]

1.5 t [ps]

FIG. 5. (a) Transverse current CF’s at the first six k values of
Table II (run 1, 7 =245 K). (b) Transverse current CF’s at the
k values of Table IV (run 3, T =298 K).

F__(k,t)
33
[ (kJ/moD*
170
150
130
0 0.004 0.008 t:z[psz]

FIG. 6. Enlarged view of the short-time behavior of the
energy-energy CF at various k values, with the polynomial rep-
resentation used to remove the librational glitch (see text). The
curves are labeled according to the value of k, reported in Table
V.
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TABLE IV. Equal time values of the ACF’s of run 3
(T =298 K).

k Vn e1/22 Coi(k,o)

No. (A7 (A /ps)? (A/ps)?
1 0.2875 0.0676 13.67 13.20
2 0.4066 0.0821 13.87 14.08
3 0.4979 0.0775 13.80 13.59
4 0.5750 0.0843 13.85 14.11
5 0.6428 0.0834 13.80 13.85
6 0.7042 0.0914 13.84 13.67

and 298 K, with a detailed view of the low-k region in the
inset, and compared with experimental data from x-ray
scattering [39] at 253 and 298 K and at 250 K [40].

As can be seen, the experimental curve lies systemati-
cally below the simulation results. Clearly, the main
effect of lowering temperature on S (k) is the resolution
of the low-k shoulder that becomes a clear peak at 2 A},
as a consequence of an enhanced intermediate-range or-
der.

At still smaller k, one can also observe, especially in
the low-temperature experimental data, a rising of the
S (k) curve to reach the k =0 value, computed from the
experimental value of the isothermal compressibility.
Again, this reflects enhanced correlated density fluctua-

1.0

0.50

0.0 . .
0] 6 K [ Avl]
FIG. 7. Comparison of S (k) at 245 and 298 K. The curves
are the Fourier transforms of the corresponding radial distribu-
tion functions, while the open and solid squares are values ob-
tained as equal time values of the density-density ACF of Tables
II-IV. In the inset, the low-k MD results are compared with
the experimental x-ray scattering data at 298 and 253 K [39]
and at 250 K (crosses) [40].
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TABLE V. Generalized thermodynamic properties and frequencies (run 2). The zero-k values are
extrapolated data. The second part results have been obtained from initial values of CF’s that include a

rotational energy term.

°Ig h(k) ¢, (k) y (k) a(k) funlk) fuolk)  furlk)  fry(k)
No. (A ) (kJ/mol) (J/molK) (107*/K)  (TH2) (THz) (THz) (THz)
0 0 —44.24 87.8 1.0047 —2.0 0 0 0 0
1 0.2877 —44.09 77.3 1.0018 —1.23 4.079 14.01 0.1717 5.45
2 0.4068 —43.52 62.8 1.0005 —0.605 5.453 19.33 0.1183 6.75
3 0.4982 —43.16 72.6 1.0017 1.19 7.064 23.08 0.2934 7.95
4 0.5753 —42.48 394 1.0402 4.19 8.131 26.37 1.6309 12.69
5 0.6432 —41.90 61.0 1.0091 2.7 8.432 28.93 0.8022 10.85
6 0.7046 —40.74 63.5 1.0269 4.93 8.912 31.22 1.4629 11.26
8 1.2865 —35.42 60.0 1.3274 28.7 9.401 44.63 5.379 17.78
11 2.0744 —39.24 41.4 1.0884 27.3 6.892 39.94 1.935 19.1
12 2.8766 —38.83 36.2 1.583 76.6 7.992 33.67 5.142 18.4
0 0 —37.5 112 1.0016 1.34 0 0 0 0
1 0.2877 —35.8 103.37 1.0092 3.23 4.079 14.006  0.3903 5.88
2 0.4068 —35.15 87.63 1.0176 4.37 5.453 19.32 0.7244 8.38
3 0.4982 —33.17 96.97 1.0515 7.5 7.064 23.03 1.604 9.84
4 0.5753 —32.83 64.66 1.1245 9.44 8.131 26.27 2.869 13.3
5 0.6432 —31.65 82.71 1.0993 10.4 8.432 28.82 2.657 13.4
6 0.7046 —31.37 83.31 1.1272 12.28 8.912 31.09 3.1786 14.0

tions in the supercooled liquid. According to Xie et al.
[40], these increased density fluctuations should be asso-
ciated with a larger fraction of water molecules partici-
pating in clusters rather than with increased correlation
lengths. This phenomenon is much less apparent in the
simulation data, which are also hard to extrapolate reli-

ably at k =0, as the isothermal compressibility computed
in simulations is affected by a large uncertainty [28].

The k dependence of the generalized thermodynamic
properties and frequencies of Table V is shown in Fig. 8.
As to Vy3(k), the equal time value of the energy-energy
time correlation function, we have used a “corrected”

44| @g -h(k) [10°J/mol ] (THz) )
401 40 F
36|

FIG. 8. k dependence of the generalized
thermodynamic properties and generalized fre-

quencies. The zero-k value of ¢, has been ob-
tained in an independent calculation [24].
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value V' (k), where the librational contribution has been
removed, as outlined before.

Comparing these results with the corresponding ones
for argon [17], one can observe significant differences.
Besides the behavior of S (k), two separate peaks at 2 and
3 A7! for supercooled water, as opposed to one for ar-
gon, h (k) is negative at all k’s considered and also a(k)
becomes negative when k —0. [The value of a(k) extra-
polated to k =0 is —2.0X 10~ % K~1.] It should also be
noted that the value of ¢,(0), obtained with a polynomial
extrapolation as the other data in the second row of
Table V, agrees very well with that obtained in a previous
independent calculation with no approximations [24].

In the supercooled region, the function a(k), which is
negative at k =0 in agreement with the experiment [41],
crosses the zero at k =0.45 A~ ! so that y is exactly 1 at
K =0.45 A™! and stays very close to 1 up to
k~0.8 A", The temperature dependence of a [28] al-
lows us to assume that y(k) will be close to 1 also at 298
K for the TIP4P model as in real water. As a conse-
quence, f,r(k), which is proportional to y(k)—1, turns
out to be negligible compared to f,,(k), f,,(k), and
Froho.

A further important difference with respect to argon is
that f, (k) is roughly 3—4 times larger than f,,(k). In
argon 1.5 <y <3, depending on the thermodynamic state
[11,12,17,42], and f,, (k) is larger than f,, (k) by

J

1

50-80%. We shall see that these two differences play a
fundamental role in determining the behavior of the sys-
tem as to transport phenomena and especially sound
propagation.

It is also worth stressing that if the rotational term is
included in the calculation of the energy (see the second
part of Table III), a(k) is positive, although y (k) is still
very close to 1. Moreover, the values of c,(k) are in-
correct. In particular, the value extrapolated at k =0 is
too large compared with that of Ref. [24]. In our
opinion, this depends on including rotational terms only
in the energy, so we chose not to include them in all cal-
culated correlation functions, relying on the complete
separation between librational and acoustic modes.

B. Hydrodynamic limit

It is important to compare the classical hydrodynamic
theory [14,43] with the present generalized approach in
the hydrodynamic regime k,w—0. The most apparent
difference is the frequency dependence of z, (k,z), zq(k,z),
and z,,(k,z) and the presence of the term A(k,z). It can
be shown that z,,(k,0)—0 with k as well as f,,(k),
Sur(k), fuo(k), and fp, (k). Hence A(k,z)—0 as k3 (see
Ref. [17]) and can be neglected, while z,(k,0) and z,,(k,0)
tend to a finite limit. So, when k,w—0 the following re-
lations hold:

G, (k,Z)= 4.1
H (c2k2/y) @
z+
, . (=K /y)
z kit T
z+yDrk?

_ —(c2k*/y Ny —1D)1/?
Gi3(k,2)= 2.2 2 272 272 ) (4.2)

{(z+yDpk®)|z*+¢k’z +(clk? /7)1 +(y —1)cik?/y)z)}
_ [22+gk%z +(c2k? /)]
Gi3k,z)= L — (4.3)

{(z+yDrk*)z*+@k’z +(cfk*/y) ]+ (y —1)(cik?/y )z}
= -
G44(k,Z) Z+Zo(0’0) ) (4.4)
~ _ 1
Gss(k’Z)_z+zq(0,O) ’ @3

where
_ [ ke | (4.6)
7 |'ms(0) ’ '
A (4n+¢)
Dy=—T 410 @)
nmc, nm
v2 v#

z,(0,00=—7%, 2,(0,0)=—1" . 4.8)

é e YDy

¢, is the adiabatic sound velocity, D, and A, are the thermal diffusivity and conductivity, and ¢, 7, and & are the total,
shear, and bulk viscosity. v,, and vy, are the limits for k —0 of f,,(k)/k and fr,(k)/k, respectively.

Equation (4.1) is the well known classical hydrodynamic expression for the transform of the density-density time
correlation function [43]. It is also worth stressing that, under some assumptions for the solution of the cubic equation
[42,43] given by the denominators of Egs. (4.1)—(4.3), one can obtain the following equations in the time domain, i.e.,
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the transforms of Eqs. (4.1)—(4.3) with these hypotheses:
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_ _ Tyt w,+(y— 1w
Gl,(k,t)=i7’y—”e ot} € . {cos(wstH- DTV OT | intw, 1) ] , (4.9)
(k—l)l/z —ort —w,t (CUZ_COT) .
Gk, t)=— ” e —e cos(w,t)+ - sin(wgt) | 1, (4.10)
s
*a)Tt . —a)2t o ®
Gtk t)=4— 4 =L cos(o, )+ |2+ —2T in(w,0) | @.11)
Y Y s oy—1)
where
wr=Drk? w,=Tk? o,=ck , 4.12)
with I' the sound attenuation coefficient and
K2+ (y—1o
o, = Py~ lor (4.13)
2
In this case, the poles of the denominator of Egs. (4.1)-(4.3) are
Zp =0, z;=io;tw, z_=—io;+w,. (4.14)

Schoen, Vogelsang, and Hoheisel [42] have used Eq. (4.9) to fit the density-density ACF and obtain y(k) and the
three frequencies of (4.12). This procedure does not allow us to distinguish a z dependence of z, from an increase of
v(k), unless the energy-energy and energy-density time correlating functions are also calculated. If, for example, the
Laplace transform of the density-density ACF can be well fitted by an expression like Eq. (4.1),

G“(k,z)z 1

1

un (k)
z+ /

= , 4.15)
Funk)?

z+f, (k)?

1 Fun(KP[y(k)—1]

Z+ f(kP——

wl B

one can interpret this result in two different ways: (i) y is
larger than 1 and a simple exponential dependence of the
generalized viscosity [the term that multiplies f,,(k)? in
Eq. (4.15)] and (ii) y(k)=1 and a z dependence of
1/[z +z,(k,z)] such as

a, (k) [1—a,(k)]
24y (k) z+y,,(k)
a, (k) wn(KP[y(k)—1)
= / 2[7/ ] , (4.16)
Z+Y1n(k) fuo(k) [Z+7/2n(k)]

which corresponds, in the time domain, to the linear
combination of two exponentials.

From the left-hand side of Eq. (4.16) one can conclude
that z_, does depend on frequency as follows:

— 71n7/2n+[an7/1n+(1—an )1/2n ]Z

z,(k,z)
z +any2n +{ —Qa, )7/1n

(4.17)

From the right-hand side of Eq. (4.16), conversely, one
obtains that z_(k)=1y,(k) so that

fuolk)?

S (4.18)
Sun(K)

y(k)—1=[1—a, (k)]

z+72,(k)

z+z,(k,z)

Moreover, if the decay rate y,, (k) is faster than that of
G, (k,t), the latter can be fitted in time with an equation
equal to Eq. (4.9), as will be shown in the next subsection.
This ambiguity can be resolved by an independent calcu-
lation of the coefficients y(k), f,,(k)? and f,, (k) ie.,
by calculating the energy-density and energy-energy time
correlation functions.

C. Calculation of G,,;(k,t)

The G,(k,t), G3(k,t), and Gj;(k,t) obtained from
Egs. (3.16)-(3.19), using the initial values Vj(k), are
shown in Fig. 9 at k =0.288 A~!. These results show the
kind of problems one can have when using the optimized
parameters, which derive from the fit to G;(k,?) via Eq.
(4.9), to calculate G3(k,t) and Gj;(k,t) by Egs. (4.10)
and (4.11).

The difference from the corresponding functions calcu-
lated from the simulation is apparent and is clear evi-
dence of the ambiguity mentioned in the preceding sub-
section. Actually, the correct G;(k,?) is always small, as
it should be when y=1 [see Eq. (4.10)] and G;(k,?)
behaves like an exponential [Eq. (4.11)]. Hence the in-
correct value ¥ =2.9 is a consequence of the formal iden-
tity Eq. (4.18) and we must conclude that, as y(k)=1, z,,
does depend on frequency.
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v=2.9; u)T=O. 18 THz

W\ ®.=4.2 THz; ©_=6.8 THz
0.8} 1\ . z s

0.6 ¢ -
¥
0.4+ [
A

0.2¢ f

025 0.5 1 15 ¢ [ps]

FIG. 9. G (k,t), —G3(k,t), and G33(k,1:)o (7tll'1in curves),
computed from MD data for k =k_;,=0.288 A . The bold
curve labeled G,;(k,?) is a fitting function whose optimized pa-
rameters have also been used to obtain G;(k,t) and Gs;(k,t)
through Egs. (4.10) and (4.11).

Figure 10 shows our results for G5(k,t) and G;;(k,t)
at four k values. The amplitude of G;(k,¢) is very small
atallkuptol A™!, which suggests a simplified approach
to the analysis of results. In fact, it can be seen from Eq.

1103
1.0
033(k,t)
0.8
0.6 T
3
0.4 r
6 R
|- ’_—\
0.2 8
3 —
0 ~ S
G (kt) N\ 11
-0.2 B M

0 025 05 075 1 ¢[pg]
FIG. 10. k dependence of G;(k,t) and G3;(k,t) CF’s. The

curves are labeled according to the value of k given in Table V.

(3.24) that |G 5(k,z)|—0 when f,;(k)—0, ie., y—1,
and A(k,z)—0, so that |z,,(k,z)| —0. As the first condi-
tion is fulfilled at least up to 1 A~ the second also must
be substantially obeyed [gote that z,,(k) is close to zero
even for argon up to =2 A~ ! [17]].

Under these circumstances, Egs. (3.23)-(3.27) become

~ 1
G“(k,z)% . fun(k)z , (419)
z
Fuolk)?
z [z +2z,(k,2)]
G5 k,z)=0, (4.20)
~ 1
Giy(k,z) = , (4.21)
33 z qu(k)2
[z +2z,(k,2)]
Gaylk,z)= (27 fun (k)] 4.22)
44\ Rys )= ) .
Sfuolk)?
2 uo 2
{lz+z,(k,2)]} |z°+ iz +zo(k,z)]z+f“"(k)
Gys(k,z)= Z - , (4.23)
{[z +2z,(k,2)]} 2+M
EA [z +2z,(k,2)]

and A(k,z)=0. It is worth observing that when y(k)=1,
a(k)=0, and G;(k,t)=0, G;(k,t) is equivalent to the
temperature-temperature ACF [20,44]. To fit the La-
place transforms of the time correlation function accord-
ing to Egs. (4.19)-(4.21) and to obtain the transport
coefficients z,(k,z) and z,(k,z), it remains to assume a
functional dependence of the latter on frequency.

In the following, the models proposed in the literature
will be compared with one introduced here to allow a

more accurate description of the short-time behavior of
these transport coefficients and also to take into account
the effects due to single-molecule modes, mainly for k’s
typical of simulation and neutron scattering experiments
(>0.2A71).

V. MODELS FOR THE TRANSPORT COEFFICIENTS

To fit the equations in the frequency domain and ob-
tain the generalized transport coefficients z,(k,z) and
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z,(k,z), a functional dependence of these coefficients on
frequency must be assumed. The relations used for the fit
are Egs. (4.19)-(4.23) in Sec. IVC valid when, as in the
case of water for k<1 A~ , the two conditions
y(k)=c,(k)/c,(k)=1 and z,,(k) =0 are fulfilled.

The generalized transport coefficients z(k,z) and
zq(k,z) are the transforms of the correlation functions
Js(k,t) and J,(k,1) [see Egs. (A18) and (A19) in Ref. [17]]
and the latter two CF’s are the memory kernel of n ,(k, 1)
and nq(k,t):

1

ﬁo(k,z):m , (5.1
_ _ 1
nq(k,z) —————Z +Zq(k,2) . (5.2)

The models previously employed in the literature assume
an exponential time dependence of n,(k,?) and n,(k,?)
[19-22] (simple viscoelastic model) or a linear combina-
tion of two exponentials for n (k,t) [12]. In the latter
case, which will be referred to as model n in the follow-
ing, one has

y%ﬁ Ykt

_ A 0) —
ny(k,)=[1—a'(k)le """ “+al?(k)e (5.3)

General arguments [10,18,45] lead us to conclude that
the time derivative of n,(k,?) and nq(k,t) must vanish at
t =0, a constraint obviously violated by the simple
viscoelastic model and by model n. Furthermore, while
the viscoelastic model assumes that z, depends just on k,

model n leads to a k and a z dependence of z, [see Eq.
(5.1) and the transform of Eq. (5.3)] such as
a{(k)z +afg) (k)
o(k,Z)= » (5.4)
z+bi) (k)

where
aGy (R =y (k)y k)
aGk)=[1—a!"(k )]7/(1‘,’,)(k)+a(,,")(k)7/‘2‘,’,)(k) , (5.5)

k) =[1—alo (k) ]yss @) k)y(k) .

In both cases, the short-time behavior of J,(k,t) and
J,(k,t), i.e., the Laplace transforms of z,(k,z) and
z,(k,z), is described incorrectly. In fact, the viscoelastic
treatment assumes a complete time scale separation be-
tween the relaxation time of G, (k,¢) and J,(k,?), so that
z,, takes the zero-frequency value, while model »n implicit-
ly assumes a fast decay of the correlation function, whose
contribution is @ {)(k), i.e., z— o in Eq. (5.4).

In the case of water, the viscoelastic model cannot be
adopted, in view of the frequency dependence of z,(k,z)
and zq(k,z). Moreover, it is necessary to include in the
description both the collective acoustic mode and single-
molecule modes, especially the one corresponding to the
45-THz band in the spectrum of the center of mass veloc-
ity ACF. All this stresses the importance of a good
description of the short-time part of n(k,¢) and nq(k,t).

It is more convenient to set up a model for J, (k,?) and
Jq(k,t) rather than n(k,t) and nq(k,t), so the new model
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will be labeled model J. To make sure that the latter
correlation functions have the correct short-time
behavior keeping two well separated time scales, we
chose a time dependence of the form

J o (k,t) —At
_o 2 — (o) Yis
7. (,0) ay (ke
x| costal ] 4 m o) LK)
t
cos[wy’ mS° o)
(o)
+1—aP ke T (5.6)
where
l_a(o)(k)
”>(k)=y(1‘})(k)+¥y‘2‘j’(k) : (5.7)
a_]a (k)

Relations (5.6) and (5.7) describe a z dependence of
z,(k,z) such as

z,(k,z) 22+a'(k)z +aiF (k)
T,060) 2 +a (k2468 (k)z +b5 (k) 58
where
‘11(})_2711)4'7’(23) >
‘101 27’117/(0(11
+(1—aP)y 9+ + o) (5.9)

b(ﬁ)z?’(ﬁ) +‘01 +27/1J 7’21 >

2
b ="+l

and the k dependence has been omitted for simplicity.

The number of parameters increases to 5 from 3 for
model n. This is a straightforward consequence of the
fact that model J also describes the single-molecule mode
at ~45 THz. In fact, the two extra parameters are the
frequency and the decay rate of the single-molecule
mode. Moreover, model J, besides the correct descrip-
tion of the short-time behavior, allows us to know
J,(k,t), the memory kernel of n_(k,t). This is not possi-
ble with model n as Eq. (5.4) cannot be inverted, unless
the z— oo limit is subtracted. In this case J,(k,?) would
be an exponential with an amplitude (a{%'—a{2’b{?)) and
a decay rate (1/b(%)).

Equations (5.6)-(5.9) can also be applied to J,(k,?),
z,(k,z), and n,(k,?), with the parameter index changing
from o to g. For model n we have

Gy (k)= f“"f“"c‘::’;mzptjz ain) (5.10)
where

Cip=0o*—oXaG) + i, +fi,)+ai3 o, (5.11)
and

D, =b{f2 +(a\D+bS)f2, —w?) (5.12)

The Laplace transform of G;;(k,t), the real part, is
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f% aon)b0n+wa ))

Gy(k,0)= (5.13)
[[bé)zl)f%qmwz(a(li+b0n)] +m2[c‘) - aOn +qu ] }

The same relations with model J become

Gy (k)= ffafuszo[a()J b +:)2(a(1‘}2 (;J)_aé).] ‘111 _bog))] ’ (5.14)

Ci,Tw°D1;

where

Cry=a' =" U, +bi5 + 1, +£2,)+ 0 pa G+ f2,6'7+ 12, D= fhd,a (5.15)
and

DlJ a(ll)w4_w2[b(o)+al (J +fun +fu<r ]+fuab(a)+f bzﬂ)"‘-]aa(ﬁ)) (516)
and, for the transform of G;;(k,1),

_ Fh T, lably +o¥asly —algaly —biy)]
Gi(k,w)= ) ) , (5.17)
C3J +Cl) D3J

where

Cy=a\fo*—w’[bi§+a\ 9, +f)1+bfF, (5.18)
and

Dy =0~ b\§+J,+ f7,)+ai§I, +b9fF, . (5.19)

In Egs. (5.14)-(5.19) the k dependence has been omitted for simplicity and J, =J,(k,0) and J, =J,(k,0).

For a correct comparison of models # and J, the time dependence of n,(k,t), which corresponds to the time depen-
dence of J (k,t) as given by model J [Eq. (5.6)], can be calculated. Inverting Eq. (5.1) and using Eq. (5.8), it can be
shown that the corresponding time correlation function is of the form

(o) sin[w{77(k)t
n, (k) =[1—a{V(k)—al(k)Je T3 ¥ cos[wi,aj)(k)t]+m,(,")(k)¥
'\ (k)
+aigh ke Ty alen(rye T (5.20)

where

) )= a9 k)y 9Pk + a5 (k)Y S (k) + [1— a9 (k) —ase (k) 1y 9D (k) 5.21)
m . .
§ [1—a{7 (k) —al (k)]

In Egs. (5.20) and (5.21) the index (oJ) relates to (k)= 2 72 (5.24)
coefficients obtained from model J. In the Appendix, the ¢ J, ’
method used to calculate these coefficients, from those of
Egs. (5.6) and (5.7), is described in detail. On the other hand, the fourth time derivative term would
Moreover, from Egs. (5.6), (5.7), (5.20), and (5.21), we be, according to Eq. (5.23),
obtain 16
, _ H,(k,0)=—"—=4J . (5.25)
n,(k,0)=0, T (k)

iy (k,0)=—J This result, though not exact, is very close to that one
(5.22)  obtains from Eq. (5.24) and the fourth of Egs. (5.22). All

7, (k,0)=0, these considerations show that J, is simply related to the

ision ti 10,18,45].
w6 0)=J% + b9k —alg (k)1 collision time 7, [ ]

o

Comparing Egs. (5.22) with the correct short-time VI, FIT OF THE TRANSFORMED CF'S
behavior of n,(k,t) [10,18] AND SOUND DISPERSION

(k,t)=sech?[t /7.(k)] (5.23) The optimized parameters obtained from a fit to the
’ € ’ Laplace transforms of the density-density ACF according
we get, from the second of Egs. (5.22), to models J and n are collected in Tables VI-IX at
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TABLE VI. (a) Computed (c¢) and optimized generalized frequencies and parameters used to fit
G, (k,w) with model J [Eq. (5.14)]. (b) Coefficients required to compute n,(k,¢) according to Eq. (5.20).
These values have been obtained from (a) as described in the Appendix (T =245 K).

k—l [f3n ]fJ [ftfn ]c [f:zo ]fJ [flfo ]c Ja 7/(15) 7/‘23) w‘(,a) a}a)
No. (A™) (THz? (THz)? (THz)? (THz)? (THz)? (THz) (THz) (THz)
(a)
1 0.2877 16.94 17.3 165.8 196.3 953.7 16.8 3.44 42.8 1.0485
2 0.4067 29.53 29.5 319.2 373.6 907.5 16.7 2.79 43.5 1.0357
3 0.4983 49.85 51.0 443.7 532.7 831.6 16.9 2.76 41.5 1.0370
4 0.5754 65.06 66.5 562.4 695.4 765.6 17.3 2.39 40.1 1.0331
5 0.6432 69.96 71.0 696.3 837 796.0 19.1 2.26 41.7 1.0322
6 0.7046 77.48 79.4 801.0 974.7 765.6 19.9 2.33 419 1.0330
7 0.8631 94.81 97.3 1105 1274 790.6 24.4 2.16 43.4 1.0316
N N
No. (A ) (THz) (THz) (THz) (THz)
(b)
1 0.2877 14.49 0.414 11.07 52.22 0.5273 0.1590
2 0.4067 13.10 0.459 11.32 52.26 0.5682 0.1398
3 0.4983 13.15 0.530 11.44 49.83 0.5757 0.1350
4 0.5754 12.90 0.532 11.78 47.92 0.6031 0.1171
5 0.6432 13.52 0.470 13.18 49.37 0.6331 0.1047
6 0.7046 13.69 0.523 13.94 49.11 0.6421 0.1126
7 0.8631 15.61 0.543 17.37 50.02 0.6988 0.0943

TABLE VII. Same as Table VI (a) for model n [Eq. (5.10)]. The last three columns report the time
integral of the memory kernel of the models and of the normalized density-density ACF.

olil [fl%n ]fn [f!%a ]fn 7/(&) '}/(2(;) a£za' [no(kvo)]fn [na(k90)]f./ Gll(kro)

No. (A ) (THz)? (THz)) (THz) (THz) (ps) (ps) (ps)

1 0.2877 16.5 139.2 17.4 0.428 0.191 0.4927 0.4257 4.17

2 0.4067 28.1 271.5 16.7 0.505 0.174 0.3940 0.3531 3.78

3 0.4983 47.0 411.8 20.4 0.723 0.187 0.2985 0.3040 2.65

4 0.5754 61.7 565.1 22.8 0.765 0.163 0.2498 0.2728 2.29

5 0.6432 67.1 753.0 25.6 0.679 0.147 0.2498 0.2863 2.80

6 0.7046 76.1 938.5 27.9 0.758 0.144 0.2206 0.2685 2.72

7 0.8631 98.0 1515 32.0 0.777 0.107 0.1656 0.2250 2.57

TABLE VIII. Same as Table VI at 298 K.
clil [fuzn ]f./ [fl%n ]C [fr%a ]fJ [fzfa ]c Jo ‘}’(1? 7(23) w.(lgl a‘(,a)

No. (A ) (THz)? (THz)? (THz)? (THz)? (THz)? (THz) (THz) (THz)

1 0.2875 17.3 17.3 152.9 170 1391 36.0 4.18 55.0 1.0390

2 0.4066 28.1 28.2 294.0 342 1275 29.0 3.86 51.1 1.0316

3 0.4979 45.6 44 .4 445.1 490 1261 37.1 4.27 51.4 1.0409

4 0.5750 53.4 52.5 560.7 640 1250 33.8 4.48 48.6 1.0488

5 0.6428 68.4 68.5 662.8 778 1206 37.1 6.32 50.2 1.0441

6 0.7041 74.1 74.6 761.1 900 1195 40.7 5.77 48.5 1.0546

k AU ¢ A 4 AL el aiy” ayy”

No. (A') (THz) (THz) (THz) (THz)

1 0.2875 24.42 1.755 25.06 63.52 0.6994 0.0982

2 0.4066  20.66 1.863 19.67 60.34 0.6581 0.0900

3 0.4979 25.38 1.969 25.56 59.15 0.7174 0.0940

4 0.5750 25.54 1.886 22.38 57.30 0.6569 0.1002

5 0.6428 25.63 3.735 25.55 57.67 0.7043 0.1131

6 0.7041 29.19 2.944 27.56 55.36 0.7241 0.1111
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TABLE IX. Same as Table VII at 298 K.

olil [ft%n]fn [fl?a]fn ‘y(llr’r) 7(237:) a("a) [no(k7o)]fn [na(k)o)]fl Gll(k’o)
No. (A ) (THz? (THz? (THz) (THz2) (ps) (ps) (ps)
1 0.2875 17.2 2162  41.1 1.99  0.0878 0.0664 0.0905 0.78
2 0.4066 27.7 306.7 269 2.10  0.0970 0.0797 0.0861 0.85
3 0.4979 45.6 566.5  35.65 2.39  0.0876 0.0624 0.0828 0.77
4  0.5750 53.7 7744  42.18 254  0.0933 0.0581 0.0862 0.85
5 0.6428 69.5 942.8  42.98 5.44  0.1270 0.0436 0.0648 0.61
6 0.7041 76.0 1137 43.6 3.52  0.0915 0.0469 0.0706 0.70

T =245 and 298 K. In most cases the parameter §, intro-
duced in Sec. II, is given the value 1 psz, to allow us to
balance the low- and high-frequency information. In
Tables VI-IX, the f,,(k)* have been obtained from the
second moment of G,(k,t) and agree with the corre-
sponding data of Table V within the statistical uncertain-
ty. The results for G;;(k,w) are shown in Tables X and
XI.

The spectra calculated from the MD correlation func-
tions and those from the fitting functions are compared in
Figs. 11-13 at some values of k. As can be seen, both
models reproduce accurately ©’G,,(k,) at the smallest
k, except that the band at about 45 THz is missing in the
fit with model n. The data relevant to model » in Table I
at k >0.5 A”! have been obtained with 8=1/f,,(k)? as
those obtained with §=1 ps? are unphysical. This prob-
lem does not show up at 298 K as the bands correspond-
ing to single-molecule modes are less resolved and model
n is able to compensate by a large increase of [ £, (k)*] I

Model J, on the other hand, is only weakly dependent

on 8 and leads to values of f,, (k)% f,,(k)? and qu(k)2
very close to those calculated independently from V,,;(k).
Note that although the [f,,(k)?] s from model J are sys-
tematically underestimated by ~ 15%, their ratio to the
correct values does not depend on k.

In the case of G3;(k,w) (Tables X and XI) model n
shows more clearly its limitations, so only results relevant
to k =k,,;, and 3k, are reported. In fact, in this case
there are two separate bands and model » cannot com-
pensate the effect of the higher-frequency band by in-
creasing f Tq(k)z. Actually, the main bands of the spectra
shown in Fig. 13 are those at 10—15 and 45-60 THz.
Their position depends slightly on &, while the amplitude
of the high-frequency band increases much more rapidly
with k.

It is also worth stressing the different behavior of
Jo(k,t) and J,(k,t). Both correlation functions show a
fast decay followed by a long-time tail, but the latter is
negative for J,(k,t) [1—al’’(k)]<0 and positive for
J,(k,t) [1—a{#(k)]>0. This difference is confirmed by

TABLE X. (a) Computed (c) and optimized generalized frequencies and parameters used to fit
G3;(k,0) with model J [Eq. (5.17)]. (b) Coefficients required to compute n,(k,?). These values have
been obtained from (a) as described in the Appendix (7 =245 K). The last two columns are the time in-
tegral of the temperature-temperature ACF and the corresponding generalized thermal diffusivity [see

Eq. (10.2)].
ko Ukdy Ul Y, vy v o a’
No. (A ) (THz)? (THz)? (THz)? (THz) (TH2) (THz)
(a)
1 0.2877 30.9 29.7 11234 414 3.05 40.9 0.8997
3 0.4983 74.0 63 1191 25.1 2.26 38.6 0.9047
5 0.6432 153 118 1618 40.5 1.69 41.6 0.9501
6 0.8046 153 127 1525 35.5 1.68 40.3 0.9381
8 1.2865 315 316 2187 50.9 3.58 32.8 0.9747
11 2.0744 257 1125 30.81 4.08 33.0 1.0867
12 2.8766 251 983 25.4 7.27 39.8 0.9891
Koo s v & d a Guk0) [Drk0)],
No. (A ) (THz) (THz) (THz) (THz) (ps) (A" /ps)
(b)
1 0.2877 25.1 9.20 25.8 45.9 1.282 —0.442 1.992 6.06
3 0.4983 15.4 9.08 140 489 1.366 —0.774 1.023 3.94
5 0.6432 38.6 3.92 21.0 52.5 0.580 —0.064 0.540 4.37
6 0.7046 33.1 4.46 18.4 51.6 0.599 —0.087 0.597 3.35
8 1.2865 64.0 4.51 18.5 553 0.247 —0.015 0.233 2.55
11 2.0744 33.8 1.38 15.2 45.4 0.418 0.072 0.0525 4.43
12 2.8766 24.6 6.45 17.1 46.0 0.618 0.038 0.0989 1.28
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TABLE XI. Same as Table X (a) for model n [Eq. (5.13)].

k {f?z"q ]fn 7/(1?1) 7/(221) a;‘l)
No. AN (THz)? (THz) (THz)
1 0.2877 44.9 26.8 10.7 —0.46
3 0.4983 98.6 23.9 11.2 —0.67

©%G. (ko 30 7
11 .
[THz] A s
4 - |
3L 1L
2+ 4
1L 1
,\».::
° ' 0
(] 20 40 o [THz]
FIG. 11. Longitudinal current spectra computed directly

(dotted curves) and from model J (solid curves) and model n
(dot-dashed curves). The latter has been applied only to the two
lowest k. The inset shows an enlarged view of the high-
frequency region for the same two k (T =245 K).

2
® G“(k,m) 6
[THz]

0 20 40 60 o [THz]

FIG. 12. Same as Fig. 11 at T =298 K.

2 ¢
o) G33(l\,m)

['I'Hz]10 |

N \\‘;n :‘;\‘ R
| L K g
40 60 o [THZ]

FIG. 13. Same as Fig. 12 for the spectrum of temperature-
temperature ACF at 245 K.

ny(k,t) and n,(k,t) from model J [as3”(k)>0 and
a5¥(k)<0] and from the results of model n [a!?)(k)>0
and a!?(k)<0].

From the data in the tables, it can also be seen that all
parameters, except f,, (k)% f,,(k)?, and qu(k)z, depend
weakly on k2. For example, f,,(k)? and f,,(k)? change
by an order of magnitude in the k range spanned, as the
theory predicts, while the other parameters change at
most by ~70-80 % in the same k range (Fig. 14). Hence
it appears sensible to extrapolate these curves with a po-
lynomial of the second degree in k2, to estimate the
behavior of w?G (k,w) at low k values through Egs.
(5.6)—(5.8). The results of this fit also are shown in Fig.
14.

From the curve calculated at various k values, we ob-
tain the frequency of the maximum o, (k) and the
width at half height of the acoustic mode peak Sw; /,(k).
The ratio w,,,,/k at 245 and 298 K is reported in Fig.
15(a) and 8w, /,(k)/k?* at 245 K in Fig. 15(b).

It can be noted that the positive anomalous sound
dispersion and the remarkable band narrowing begin be-
tween k =0.01 and 0.1 A~!. This is the same k range
where y577/(k), the decay rate of the long-time tail of
n,(k,t), becomes of the same order of magnitude as the
frequency of the sound propagation peak. This holds
true also for model » as the two models lead to very simi-
lar results in the k, 0 — 0 limit.

By a polynomial extrapolation of the data reported in
Table VIII, it is possible to predict the behavior of these
functions at 298 K. The shape of the dispersion curve is
slightly different from that at 245 K and shifted to larger
k, a consequence of the shift to higher frequencies of the
fitting parameters. At 298 K, w,,,(k) and 8w, ,,(k) from
the model can be compared to the neutron scattering re-
sults [3,4] [Figs. 16(a) and 16(b)]. The agreement is satis-
factory, although the experimental w,,, (k) is slightly un-
derestimated, as already noted [10].

The computed sound velocities are 14£0.7 (run 1) and
15+0.7 (run 2) A/ps at T =245 and 14.2+0.8 A/ps and
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298 K. As we do not calculate the isothermal compressi-
bility X, which determines S (0), for simplicity the low-k
behavior of S (k) has been described with a polynomial fit
on the data of run 2 (f,,(k)>=[kpT/mS(k)lk?
=m k?+m,k*). This does not account for the rising of
S (k) in the low-k limit, observed experimentally in super-
cooled water, which leads to a lower sound speed at 245
K. This feature is much less apparent in our MD S (k),
as can be seen in the inset of Fig. 7.

Besides the almost quantitative agreement at room
temperature, the qualitative trends at both temperatures
can be explained by a simple extrapolation of the parame-
ters that determine the k and w dependence of the gen-
eralized viscosity. .

Thus we can conclude that at the k values typical of
neutron scattering and simulation, the sound velocity is
2-3 times larger and the bandwidth an order of magni-
tude smaller than those predicted by a simple extension

of the hydrodynamic values. Besides the frequency
dependence of 7i(k,z), the physical quantity that plays
the major role in determining the dispersion curve is the
ratio [9,10]

(k) —ag(k)?]1/? wolK)
[@ @ ] Ef ~3, 6.1)
wO(k) fun(k)

which is much higher than in most other liquids. wg(k)
and (k) are the second moments of G,;(k,t) and
G,,(k,t), respectively. The importance of the value of
this ratio can easily be checked by repeating the calcula-
tion done to get the results of Figs. 15 and 16, with a
smaller value of f, (k). Qualitatively, a dispersion curve
of the same shape would be obtained at the larger k’s, but
the size of the dispersion would diminish and the band-
width would increase linearly with the value of the ratio
of Eq. (6.1).

FIG. 14. k? dependence of the fitting pa-
rameters for model J applied to the density-
density ACF at 245 K. The curve is a polyno-
mial fit of the discrete values (solid squares).
The error bar corresponds to the standard de-
viation. In the case of f,,(k)? and f,,(k)?
(bottom right) the open squares are calculated
values; see Table VI.

a (k)-1
[+]
o (k)
o
0.040 | [THz]
: o[ a1
0.020 | i
| 20 1 1 1
00 1 1 1
Yzc(k)
[THz] 1000 P
0 J (k)
[THZ?)
20| L
10| i
0.0 1 1 1 500_0 ' " L
ylc(k)
[THz]
20 |
10 b
0.0 1 1
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FIG. 15. (a) Dispersion curves for the acoustic mode, calcu-
lated from model J at 245 and 298 K. The solid and open
squares are the MD values at the same two temperatures calcu-
lated from the Laplace transform of CF’s of Figs. 1 and 2. The
second moment of the longitudinal current ACF (w,, /k) and of
the density-density ACF (w,/k) are also shown for T'=245 K.
(b) Width at half height calculated from model J at 245 K. The
solid squares are MD values from CF’s of Figs. 1 and 2 at 245
K. The horizontal line is the hydrodynamic limit (7T =245 K).

VIL. CALCULATION OF n, (k,t), n,(k,t), G4 (k,t),
AND Gs;5(k,t)

With the knowledge of the generalized transport
coefficients z(k,z) and z,(k,z) it is possible to calculate
n,(k,t) and n,(k,t) by means gf Eqgs. (5.1) and (5.2) at all
k’s. The results at k =0.288 A ! are compared in Figs.
17(a) and 17(b) with those obtained from model » with
the parameters given in Table VII.

The main differences are visible at short time. The
curve from model J has a vanishing derivative at ¢t =0
and the oscillation due to the nearest-neighbor cage,
features that are not included in model n. At longer
times, on the other hand, there are only minor differences
due to the different values of [f,,,,(k)z]f and [fuo(k)2]f.
Figure 17(a) and the inset also show n,(k,t) computed
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wma.x( k)
[THZz]
20

15
10

5.0

0.0 é

Amm(k) Hyd
[THz] (b)

40} o

30+ E
MD

20+

O expt.

10+

0.0 1 1 1
0 0.1 0.2 0.3

041( Z[A-Z]

FIG. 16. (a) Comparison of experimental [3] (open squares)
and MD results (solid squares) for the k dependence of the fre-
quency of the maximum of the spectrum of the longitudinal
current ACF. The curve shows the prediction from model J.
The straight line is the hydrodynamic behavior (7 =298 K). (b)
Same as (a) for the width at half height.

directly from the simulation data through

zZ
22+ oKV (ky2)z + f,, (k)

Gylk,z)= (7.1)

The agreement between the function from model J and
that obtained according to Eq. (7.1) is satisfactory, al-
though some caution is necessary due to possible trunca-
tion effects on G,,(k,z) from Eq. (7.1). As already no-
ticed, n,(k,t) has a positive long-time tail, while ng(k,t)
a negative, faster, long-time tail.

Gy(k,t) and Gss(k,t), calculated by inversion of
Gy4(k,z) and Gs(k,z), as given by Egs. (4.22) and (4.23),
are shown in Figs. 18(a) and 18(b), where also n,(k,¢) and
nq(k,t) are plotted. The latter are very similar to
G(k,t) and Gss(k,t), respectively, as it should be ex-
pected, since these pairs of functions must be equal in the
k—0 limit. In fact, f,,(k)* and f,,(k)? vanish as k2,
while z,(k,z) and zq(k,z) go to a finite limit and depend
weakly on k.
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FIG. 17. (a) Longitudinal memory function n,(k,t) from
model J (solid line), model n (dotted line) and from an inversion
of Eq. (7.1) (dash-dotted line). The inset shows an enlarged view
of the short-time region (T =245 K, k =k;,). (b) Temperature
memory function n,(k,t) from model J (solid line) and (n) (dot-
ted line) at 245 K and k =k ;,.

VIII. COLLECTIVE AND INDIVIDUAL
DYNAMICS AND LONG-TIME TAILS

Recently [46], Kerr’s theory [47] has been applied to

calculate the time correlation functions of collective vari-.

ables from the corresponding self-part. Other authors
[48,49] have obtained, for the spectrum of the collective
part, a relation with that of the self-function that is
equivalent to Kerr’s:

[Gll(k’z)]self
S(k)—1
S (k)

It is clear that when S(k)=V;(k)=1 the collective
function reduces to its self-part. From Fig. 19 it can be
seen that this occurs in the case of water at k =2 A,

G“(k,z): (8.1)

1+ {z[G,(k,z) ] —1}

1111

i.e., when S(k)=1. In this case, even the long-time de-
cay rate A(k) of the self- and collective functions turns
out quite similar.

From Fig. 20 one can also note that the acoustic mode
band is hardly visible when k > 1 A7l asa consequence
of its decreased amplitude and merging with the two
bands corresponding to single-molecule modes. This is
apparent from the figure, where the increase of amplitude
of the O—O—O bending mode (8—10 THz), as a function
of k, at the expense of the O—O stretching mode (40-50

[ps]

1 T T T T
[ps]
0.8 t+ 004 g
0.6 L 0.03 |
0.02
0.4 | E
1 0.01
0.2} 0 i
|
0 \ nq(kmln’t)
o2l ﬂq(O,[)=G55(0,t) (b)
' Gss(kmm’t) |
0 0.2 0.4 0.6 0.8 ¢ [ps]

FIG. 18. (a) Comparison of the longitudinal memory func-
tion n,(k,t) (solid line) with G (k,?) (dotted line) at k =k ;,
and 0. In the latter case the two functions coincide (dot-dashed
line) (T'=245 K). The inset shows the corresponding spectra.
(b) Same comparison for n,(k,¢) and Gss(k,1).
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FIG. 19. Density-density ACF (bold linle) and the corre-
sponding self-part (thin line) at k =2.074 A~ at 245 K. The in-
set shows w? times the corresponding spectra.

THz) is clearly visible. The position of these two bands is
not significantly dependent on k. This is why this low-
frequency single-molecule mode does not affect much, at
low k’s, the collective density-density ACF, which can
therefore be described satisfactorily by model J, although
it does not take into account that mode. Including it in
the model would require an additional combination of
sine and cosine functions in Eq. (5.6), tuned on the fre-
quency of the mode, 810 THz.

Another feature worth stressing is the lack of de
Gennes narrowing [50] of the spectrum of G,,(k,t) at
k=(2w/0)=2 (o is the length parameter in the LJ part
of the TIP4P potential), where S (k) has one of its maxi-
ma. Actually, A(k), the long-time decay rate of G, (k,?),

2
® Gn(k,m)
[THz]

4.0t
12

2.0 I~ 11

1.0+

0.0 I 1 1
0] 20 40 60

o [THz]

FIG. 20. Spectra of the longitudinal current ACF. The
curves are labeled according to the value of_kl, reported in Table
X (9 and 10 relate to k =1.467 and 2.034 A, respectively).

[THz]

0.60

l/G”(k,O)

0.40

0.20

0.0 !

2 k [A-l] 3

FIG. 21. Long-time decay rate A(k) and the inverse of the
time integral of the density-density ACF at 245 K. Solid sym-

"bols relate to the average value of the two runs, while open sym-

bols relate to the single runs; the curves are drawn as a guide.

reaches a minimum at a value of k that does not coincide
with that of the maxima of S(k) at room temperature
[10].

A(k) is shown in Fig. 21 together with the inverse of
the area under G,(k,t). There is an apparent correlation
between the behavior of these two functions, which indi-
cates that the long-time regime is also affected by the way
z,(k,0) depends on k

1  funlk)?
G“(k,a):O) fuo(k)2

When k <1 A7, the ratio of the f’s above is 0.09—0.08
at 245 K and does not vary much; see Table VI (the
minimum is 0.03 at k =2 A1), z,(k,0), conversely, in-
creases monotonically with k, from 2.35 THz at k =k _;,
to 12 THz at kK =10k ;. The combination of these two
trends produces the results of Fig. 21 and shifts the
minimum of A(k) from the k corresponding to the max-
imum of S (k). As we shall see, this behavior is related to
the fact that A(k) does not depend on thermal diffusivity.

z,(k,0=0) . (8.2)

IX. TRANSVERSE CURRENTS

With the procedure outlined above it is possible to cal-
culate the Laplace transform of the transverse current
ACF C|(k,t), shown in Fig. 5. As discussed in [12], ac-
cording to hydrodynamic theory this transform can be
written as

_ C,(k,0)
C,(k,z)= 5 , 9.1)
z+w, (k)7 (k,z)
where
3*[C,(k,t)/C,(k,0)
©,(k)?=—Tlim [, k0] 9.2)

t—0 at2
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The memory kernel used in [12] to fit the real part of this
function is a combination of two exponentials

l_a(nl)(k) a(i)(k)

zHy k) 24y

i, (k,z)= 9.3)

By analogy with G4;(k,z) [see Eq. (4.21)], a memory ker-
nel with the correct short-time behavior could be

1

ﬁl(k,z)Em , (9.4)
C (k,) 1
[ps]

0.50

0.40

0.30

0.20

0 5 10 15 [THz]

Cl(k,oa)

[ps]
0.30

0.20

0.0

0 5 10 15, [THz)

FIG. 22. (a) Spectra of the transverse current ACF at 245 K,
computed directly (solid curve) and from model J (dotted
curve). The inset details the high-frequency part. (b) Same as
(a) at 298 Ié.v'll“he results from model n are shown for curve 6
(k=0.705A ).
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where
z,(kz) 22+a 0 (k)z +al k) 05
Ji(k0)  Z3+a Bz +b )z +b 5D k) '

and a(llj)(k), a(()lj)(k), b(llj)(k), and bz,lJ)(k) can be obtained
from the coefficients y{5(k), 7/(211)(k), w(Jl)(k), and a(Jl)(k)
by means of equations analogous to Eq. (5.9).

The results of the fit to C,(k,0)=Re{C,(k,z)/
C,(k,0)} by equations of the form (5.17)—(5.19) are
shown in Figs. 22(a) and 22(b) and the optimized param-
eters collected in Tables XII-XV.

As can be seen from the figure, w:;x(k), the frequency
of the maximum of C,(k,w), increases with k, while the
height of the maximum decreases with k. Here too, the
single-molecule band at 45 THz is more apparent when k
increases.

It is worth stressing that a fit by model » with uncon-
strained parameters gives sensible results only at the first
three values of k at T'=245 K. It can be seen from
Tables V-VII that o,(k)? if unconstrained, would take
much too high values after the first three &, to “compen-
sate” for the band at 45 THz. Hence we chose to set it at
the value obtained by Eq. (9.2). The optimized parame-
ters for the fit with model J, on the other hand, behave
regularly, although the unconstrained o (k)? is 30-40 %
smaller than that given by Eq. (9.2).

X. VISCOSITY AND THERMAL CONDUCTIVITY

Total viscosity ($1+¢) and thermal diffusivity (D)
can be obtained, extrapolating to k =0 the parameters re-
ported in Tables VI, VIII, and X, by the following equa-
tions:

(fuolk)?s [fuo(K)?];
4 =1 7 Y = P — A
e o) A g et
(10.1)
(k)?

1 = lim po .
k—0 k?z,(k,0)  k—0k2G;(k,0)

From the first of Egs. (4.7) thermal conductivity A, can
be obtained. Moreover, from

[w,(k)?
n=11m——ig=lim2—1— (10.3)
k—0 k’z,(k,0)  k—0k2C,(k,0=0)
and
w,(k)?
G, =lim P22 (10.4)
k—0 k

the shear viscosity and the rigidity modulus can be calcu-
lated [12].

A polynomial extrapolation has been carried out on the
data of Tables VI-XV for k <1 A~ Theory allows us
to set the zero-order term equal to zero when fitting
fuolk?, fr,(k), and o,(k)?, while z,(0,0), z,(0,0), and
z,(0,0) do not vanish at k =0. The results obtained and
the experimental data are collected in Table X VI at 245
and 298 K.
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TABLE XII. (a) Computed (c) and optimized generalized frequencies and parameters used to fit
C,(k,w) with model J [with a relation such as Eq. (5.17)]. (b) Coefficients required to compute n,(k,1).
These values have been obtained from (a) as described in the Appendix (T =245 K). The last two
columns are the frequency of the maximum and the time integral of the transverse current ACF.

ko lolly [wi]e A 1avs 75y o} ay”
No. (A ) (THz)? (THz)? (THz)? (THz) (THz) (THz)
(a)
1 0.2877 54.7 87 1049.3 10.4 7.5 29.3 1.1490
2 0.4067 110.5 174 1068.5 11.6 8.5 29.0 1.1915
3 0.4983 163.6 253 1073.2 13.3 9.3 28.8 1.2447
4 0.5754 2144 335 1163.9 14.8 8.8 31.8 1.1998
5 0.6432 267.4 406 1079.8 16.0 11.4 28.0 1.3691
6 0.7046 314.8 472 1078.8 17.4 11.3 28.0 1.3867
K Wl e ol [CUk0,
No. (A ) (THz) (THz) (THz) (THz) (THz) (ps)
(b)
1 0.2877 17.81 0.7923 4.839 44.20 0.2608 0.1901 3.3 0.0704
2 0.4067 20.13 0.9451 5.537 44.39 0.2524 0.1903 4.7 0.0412
3 0.4983 22.69 0.9605 6.140 44.44 0.2511 0.1873 5.8 0.0288
4 0.5754 22.96 1.0887 7.119 47.29 0.2821 0.1855 6.9 0.0247
5 0.6432 27.38 1.3309 7.333 44 .43 0.2355 0.1931 7.4 0.0232
6 0.7046 28.69 1.3557 7.973 44.43 0.2421 0.1869 8.4 0.0206

Thermal conductivity has been calculated only at 245
K, where the energy-energy and the density-energy corre-
lation function have been computed. The value we ob-
tain is in fairly good agreement with the experimental
data. The latter has been extrapolated from data mea-
sured on the saturation curve between 543 and 273 K
[51], as values measured in the supercooled region are not
available.

The simulation result for thermal conductivity corre-
sponds to a thermal diffusivity D7 =7.8 A%/ps. The com-
parison of this result with that of Fig. 21 shows that the
long-time decay rate of G,(k,t) has no relation with the
hydrodynamic prediction [AMk)=wy(k)=Dyk?]. In this
case, A(k) would vanish as k2 and one should have
Mk)=0.65 THz at k =k _;, =0.2877 A~ and A(k)=7.8
THz at k=1 A, much higher values than that of Fig.
21, but of the same order of magnitude as 1/633(k,0);
see Table X.

At y =1, the long-time decay rate of G;(k,t) is deter-
mined by generalized viscosity rather than thermal
diffusivity. The latter is to be calculated from G;;(k,t),
i.e., extrapolating the data of Table X to k =0.

The dynamics underlying the viscosity with the TIP4P

TABLE XIII. Same as Table XII for model n (see text).

ko (efl v ve ait

No. (A7) (THz)? (THz) (THz)
1 0.2877 60.4 75.3 0.822 0.1223
2 0.4067 325 81.3 0.999 0.1234
3 0.4983 1083 82.0 1.012 0.1216
4 0.5754 79.7 1.185 0.1215
5 0.6432 83.2 1.314 0.1216
6 0.7046 79.5 1.306 0.1168

model turns out to be 30—40 % faster than in real water
at room temperature and 2-3 times in the supercooled
region, as also shown by self-diffusion and dielectric re-
laxation results [34,52]. All this is consistent with the ob-
servation that D7 /T =D =const [53,54].

XI. SUMMARY AND CONCLUSIONS

In this paper, we have examined the density-density,
energy-density, and energy-energy time correlation func-
tions for the TIP4P model of water at 245 K. From the
equal-time values of these functions, the generalized ther-
modynamic coefficients have been obtained. Moreover,
fitting their Laplace transform by means of a model for
the transport coefficients, important information around
the propagation and dispersion of acoustic modes has
been obtained. The main results we have obtained can be
summarized as follows. .

(i) S (k) shows a neat peak at 2 A~! which is a conse-
quence of the increased, intermediate-range, tetrahedral
ordering allowed by the lower temperature. At 298 K
this peak is only a shoulder of the main peak at 3 A ™"
The experimentally observed rise of the S (k) curve when
k goes to 0, related to correlated density fluctuations, is
much less apparent in the MD results.

The specific heat capacity both at constant volume and
pressure increases when k decreases in a way that makes
their ratio very close to 1 when k <1 A~'. This is con-
sistent with the very small value obtained for the thermal
expansivity, which becomes negative for k <0.45 A,
although the value extrapolated to k =0 is less negative
than the experimental data [41]. This behavior and some
other features such as the self-diffusion coefficient [24,29]
and the dielectric relaxation times [29,34,52] indicate that
the TIP4P model tends to underestimate the effect of a
lower temperature on static and dynamic properties.
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TABLE XIV. Same as Table XII at T =298 K.

R A A A
No (A ) (THz)? (THz)? (THz)* (THz) (THz) (THz)
1 0.2875 54.6 82 1172 18.0 9.4 29.1 1.224
2 0.4066 98.0 154 1066 15.8 7.3 29.1 1.137
3 0.4979  156.8 234 1200 25.5 10.4 27.7 1.338
4 0.5750  205.8 295 1206 25.5 10.6 26.0 1.393
5 0.6428  248.8 366 1131 23.4 12.9 25.1 1.517
6 0.7041  312.0 435 1293 32.0 11.4 26.0 1.414
Koo e el (GOl
No. (A ') (THz (THz) (THz) (THz) (THz) (ps)
1 0.2875 26.73 2.684 7.950 45.57 0.2744 0.1432 2.2 0.2560
2 0.4066 21.95 2.558 7.180  43.96 0.3108 0.1277 3.2 0.1421
3 0.4979 36.68 2.927 10.96 45.37 0.2552 0.1340 4.0 0.1006
4 0.5750 37.90 2.860 10.44 44.78 0.2337 0.1276 5.1 0.0791
5 0.6428 36.66 3.388 9.795  43.67 0.2195 0.1515 6.2 0.0657
6 0.7041 46.01 3.320 12.99 46.01 0.2213 0.1277 64 0.0579

1115

Also the temperature dependence of the viscosities (Table
XVI) confirms this limit of the TIP4P model.

(ii) The results in the hydrodynamic limit help to illus-
trate the ambiguous interpretation of the physical mean-
ing of functions used to fit the density-density ACF. In
particular, the effect of an increase of y(k) can be misun-
derstood as a frequency dependence of the generalized
viscosity, unless the energy-density and the energy-energy
time correlation function are also calculated. The
behavior of the latter correlation functions has shown
that, for water, it is the frequency dependence of the gen-
eralized viscosity that plays the major role to determine
the observed anomalous sound dispersion, as y(k)=1. A
further consequence of y(k)=1 is that, unlike in argon,
fur(k) behaves differently from the others, which in-
crease linearly with k, at small k’s.

(111) The G5(k,z) has a small amplitude up to k~1

~! (see Fig. 10), which indicates that y(k)~1 and
]zqg(k z)| is small [Eq. (3.24)]. Equations (3.23)—(3.27) in
this case can be simplified and reduced to Egs.
(4.19)—(4.23), showing that density and temperature fluc-
tuations are not coupled, the former being driven by the
generalized viscosity term and the latter by the thermal
diffusivity.

(iv) In view of the substantial dependence on frequen-
cy, in the case of water, of the generalized transport
coefficients z,(k,z) and z,(k,z), a simple viscoelastic

TABLE XV. Same as Table XIII at 298 K.

ars ary ait!
No. (A7hH (THz) (THz)
1 0.2875 73.3 2.66 0.0936
2 0.4066 69.0 2.61 0.0840
3 0.4979 71.6 2.73 0.0808
4 0.5750 71.0 2.61 0.0775
5 0.6428 72.0 3.04 0.0866
6 0.7041 66.9 2.86 0.0728

model, with frequency-independent transport coefficients,
turns out to be inadequate for this liquid.

(v) Model J for the generalized transport coefficients
z,(k,z), zq(k,z), and z,(k,z), introduced in this paper, al-
lows us to accurately fit the spectra of the density-
density, temperature-temperature, and longitudinal and
transverse current ACF’s also leading to a correct
descn]‘?tlon of the short-time behavior, at least up to
k=1A

(vi) The optimized generalized frequencies of the fit
agree satisfactorily with those obtained independently
from the second moments or the initial values of the
relevant ACF. The difference, which does not depend on
k, is larger in the transverse functions and is due to the
neglect of librational contributions [35].

(vii) The weak k2 dependence of the fitting parameters
allows a polynomial extrapolation to k =0 that gives
both the large dispersion and the remarkable narrowing
of the band of the acoustic mode, observed at the lowest
k accessible to neutron diffraction and computer simula-
tion.

As Fig. 15(a) shows, at 245 K there are two ranges of k
where the speed of sound increases rapidly, separated by
a plateau region. After this paper has been submitted,
MD results by Sciortino and Sastry [55] on the TIP4P
model at various temperatures have extended the analy-
ses of sound dispersion down to k =0.026 A~ , i.e., at
the edge of the plateau region of Fig. 15(a). There is a re-
markable overall agreement between their MD data and
the prediction of our model. The temperature effect also
is that obtained with our model It is particularly notice-
able that at kK =0.026 A ™! (see Fig. 5 of [55]), the speed
of sound (@p,,/k) is still twice as large as in the hydro-
dynamic limit (26 A/ps vs 13 A/ps) in the supercooled
region. This supports the results of Fig. 15(a), i.e., that
about 60 70 % of the dispersion occurs between 0.01 and
0.03A~

From a physical point of view, these features are to be
traced back to the large value of the second moment of
the longitudinal current, which determines the overall
size of the effect [see Eq. (6.1)], and to the slow decay
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TABLE XVI. Comparison of calculated and experimental (in parentheses) thermal conductivity and

viscosity and rigidity modulus.

T Ar 4n/3+E n G.
(K) (W/mK) (1072 g/cmss) (1072 g/cms) (g/cmss?)
245 0.35+0.07 (0.45) 10+2 (27) 24+0.3 (8) (11.0+1.5) 10%°
298 2.0+0.5 (3) 0.5+0.15 (0.9) (9.7+2) 10'°
y529(k) and amplitude a?’(k) of the memory kernel previous sections, describes the long-time behavior of the

n,(k,t), that determme, respectlvely, the k range
(001 0.03 A™! at 245 K and 0.02-0.06 A~! at 298 K)
and the height of the first step of the dispersion curve.

(viii) In water, the negligible coupling between sound
propagation and thermal fluctuations leads to a simplified
picture of the liquid dynamics. It is possible, in particu-
lar, to shed light on the physical meaning of some fitting
parameters. For example, the weak k dependence of J,
J,and J |, as results from Tables VI-XV, and their simi-
lar values are evidence that the short-time behavior is
dominated by collision phenomena, as shown at the end
of Sec. V, and that 7, depends weakly on k [56], at least
in the low-k region. The collision time 7, turns out to be
0.044 ps at 245 K and 0.037 ps at 298 K, in good agree-
ment with simulation results (0.04 ps) for deuterated
TIP4P water at 310 K [10].

As to the other parameters, y$5” (k) and o\’ (k) are
related to the single-molecule mode determined by the os-
cillation of the tagged molecule in the nearest-neighbor
cage, as is proved by the values of »!”(k), always in the
range 40-60 THz. It is also worth stressing that
y$27(k), the damping rate of this mode, roughly doubles
at the higher temperature and this makes it more difficult
to distinguish the single-molecule mode from the sound
propagation mode.

The parameter y57”(k), as already remarked in the

memory functions and determines the shape of the
dispersion curve, in the case of the density-density ACF.
This parameter increase by a factor of 4 when tempera-
ture rises from 245 to 298 K (see Tables VI and VIII), a
behavior opposite that of a typical structural time for this
liquid. In Ref. [18] this long-time behavior is connected
with mode-coupling effects, through the knowledge of
structural properties.

As to the parameters used in the description of the
spectra of the temperature-temperature ACF, 1/y3%)(k)
is much shorter than that relevant to the density- den31ty
and transverse current ACF, while the negative ampli-
tude and long-time tail are fairly close to the correspond-
ing values for the single-molecule velocity ACF. The
other parameters y{%”(k), y{%/(k), and y (" (k) are of or-
der 1/7,(k) and are probably an extension to relatively
intermediate times of binary collision effects.

(ix) Gu4(k,t) and Gs5(k,t) in the low-k region are very
similar to the memory functions n,(k,t) and n 4(k,t) and
should became equal in the limit k£ =0; see Fig. 18. It is
also apparent that the single-molecule mode related to
the oscillation in the nearest-neighbor cage remains more
clearly visible in G4 (k,?) than in Gss(k,t). Work is in
progress to identify the contribution to the longitudinal
momentum and energy flux, which is responsible for this
different behavior.

APPENDIX: CALCULATION OF n,, , ,(k,t) FROM J, ., (k,t)

By Laplace transform of Eq. (5.20) we obtain

» 23 +a$3(k)z?+a (G (k)z +a (k)
o (k2)= 2 a9 )23+ b (k)z2+ b D (o) ’ (A1)
+ay5(k)z°+by3(k)z*+ b1 (k)z + b (k)
where
ayy=vil+ral 2",
a(IZJ):a(laj)[w(gj)2+(7/(3zJ)_Y(ZJ) ]+a 0!)[0)( (,y Lo 7 ) ]_|_2,y(a./)(,y(la.7) (UJ )+7/ o '}/ zJ) ,
2
a(aJ)..— UJ),}/(ZJ)[ (aJ) +(7/ (o) V(ZJ)) ]+a b Y(IZJ[ ()2 +(7/(UJ)_7/(2ZJ )2]_’_2,},(21)7(2%1)7%1;1) , A
b(aJ)_y(oJ)(,y J)+2,y30'1 )+'V (o)? +C() (aJ)? _,_2,}/ '}/
2n n 4
biel=(ye) +yle)(w (aJ)2+,},(aJ) )2y @y oDy oD
boz =Y1z Yzz (e UJ +7’(01))
In Egs. (A2) all parameters depend on k, though not explicitly indicated, to simplify notation.
From Eqgs. (5.8), (5.1), and (5.9) we get an equation equal to Eq. (A1) with
ak)y=al5k), a\(k)=b'9(k), all(k)=bG(k), A3
b (k)=b'P(k)+J ,(k,0), b (k)=b{F(k)+a'F (k) ,(k,0), b (k)=alF(k)J,(k,0) .
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By simple algebra, the following relations can be derived from Eq. (A2):
P —a gy B T R (b T, e +a =0,
o)
o aoj J
Y2 nJ) ( —y n )'}/ UJ) +[b +J _Y(UJ( )_‘y )]VZ(;J) (aJ) VY,
1n
@'\ — o), (o))
L (e 1
7/ 3n 2 4
(A4)
o) 172
ol = agi, (301)2
! v
2 2
a(aj) ,y(ltrfl.l)(w(a./) +,y(t7]) —J Y—b a')+2,y(1(rfl.l,yzzl),y ZJ)
1
" (7/ (ad) _ ,},(ZJ )[ (0J)? +(7/("J ,}/(IZJ 2]
won_ Y@ e — 0 ) — bl 2y 0y 5
Ay
(Y(ZJ)_Y(ZJ))[C‘) (aJ)? +(,y(a./) ,)/2”./))2]
where J, =J,(k,0).
Solvmg the first two equations of (A4), all six coefficients can be obtained. They must be real and y9(k), y9D(k),
v599(k), 0'°? must be positive.
From Eq. (5.8), the following relations can easily be derived:
?’(23) —a J?’ZJ) +b'5y55 —b3'=0
o) 219757
Y™ 2 )
(AS)
, 1172
o | b7 ri7
©r T\ T e ’
Yas
2 (0),,(a) a((f)
o) =1+ = ?’11 Y T O(J) :
7 +(7’11 —va7)

The coefficients can now be obtained by solving the ﬁrst equation of (AS).
Hence, from the five parameters a{3(k), a7 (k), b{5'(k), b{7'(k), and J,(k,0) the parameters relevant to model J can
be calculated through Egs. (A4) and (A5). Model n approx1mates Eq (5. 20) w1th a combination of two exponentials, so

only the amplitude and the decay rate of the slower exponential, a7’ (k),y$7”(k) and a37)(k),733)(k) can be directly

compared; see Tables VI-XV.
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